ぬの部屋(仮)
nu-no-he-ya
  •       1
    2345678
    9101112131415
    16171819202122
    23242526272829
    3031     
        123
    45678910
    11121314151617
    18192021222324
    252627282930 
           
     123456
    78910111213
    14151617181920
    21222324252627
    28293031   
           
          1
    2345678
    9101112131415
    16171819202122
    23242526272829
    30      
       1234
    567891011
    12131415161718
    19202122232425
    262728293031 
           
    1234567
    891011121314
    15161718192021
    22232425262728
    293031    
           
         12
    3456789
    10111213141516
    17181920212223
    24252627282930
           
      12345
    6789101112
    13141516171819
    20212223242526
    2728293031  
           
    1234567
    891011121314
    15161718192021
    22232425262728
    2930     
           
        123
    45678910
    11121314151617
    18192021222324
    25262728293031
           
       1234
    567891011
    12131415161718
    19202122232425
    26272829   
           
    1234567
    891011121314
    15161718192021
    22232425262728
    293031    
           
        123
    45678910
    11121314151617
    18192021222324
    25262728293031
           
      12345
    6789101112
    13141516171819
    20212223242526
    27282930   
           
          1
    2345678
    9101112131415
    16171819202122
    23242526272829
    3031     
        123
    45678910
    11121314151617
    18192021222324
    252627282930 
           
     123456
    78910111213
    14151617181920
    21222324252627
    28293031   
           
         12
    3456789
    10111213141516
    17181920212223
    24252627282930
    31      
       1234
    567891011
    12131415161718
    19202122232425
    2627282930  
           
    1234567
    891011121314
    15161718192021
    22232425262728
    293031    
           
         12
    3456789
    10111213141516
    17181920212223
    24252627282930
           
      12345
    6789101112
    13141516171819
    20212223242526
    2728293031  
           
      12345
    6789101112
    13141516171819
    20212223242526
    2728     
           
          1
    2345678
    9101112131415
    16171819202122
    23242526272829
    3031     
       1234
    567891011
    12131415161718
    19202122232425
    262728293031 
           
     123456
    78910111213
    14151617181920
    21222324252627
    282930    
           
         12
    3456789
    10111213141516
    17181920212223
    24252627282930
    31      
       1234
    567891011
    12131415161718
    19202122232425
    2627282930  
           
    1234567
    891011121314
    15161718192021
    22232425262728
    293031    
           
        123
    45678910
    11121314151617
    18192021222324
    25262728293031
           
      12345
    6789101112
    13141516171819
    20212223242526
    27282930   
           
          1
    2345678
    9101112131415
    16171819202122
    23242526272829
    3031     
        123
    45678910
    11121314151617
    18192021222324
    252627282930 
           
     123456
    78910111213
    14151617181920
    21222324252627
    28293031   
           
     123456
    78910111213
    14151617181920
    21222324252627
    28      
           
         12
    3456789
    10111213141516
    17181920212223
    24252627282930
    31      
      12345
    6789101112
    13141516171819
    20212223242526
    2728293031  
           
    1234567
    891011121314
    15161718192021
    22232425262728
    2930     
           
        123
    45678910
    11121314151617
    18192021222324
    25262728293031
           
      12345
    6789101112
    13141516171819
    20212223242526
    27282930   
           
          1
    2345678
    9101112131415
    16171819202122
    23242526272829
    3031     
       1234
    567891011
    12131415161718
    19202122232425
    262728293031 
           
     123456
    78910111213
    14151617181920
    21222324252627
    282930    
           
         12
    3456789
    10111213141516
    17181920212223
    24252627282930
    31      
       1234
    567891011
    12131415161718
    19202122232425
    2627282930  
           
    1234567
    891011121314
    15161718192021
    22232425262728
    293031    
           
    1234567
    891011121314
    15161718192021
    22232425262728
           
           
        123
    45678910
    11121314151617
    18192021222324
    25262728293031
           
     123456
    78910111213
    14151617181920
    21222324252627
    28293031   
           
          1
    2345678
    9101112131415
    16171819202122
    23242526272829
    30      
       1234
    567891011
    12131415161718
    19202122232425
    262728293031 
           
     123456
    78910111213
    14151617181920
    21222324252627
    282930    
           
         12
    3456789
    10111213141516
    17181920212223
    24252627282930
    31      
      12345
    6789101112
    13141516171819
    20212223242526
    2728293031  
           
    1234567
    891011121314
    15161718192021
    22232425262728
    2930     
           
        123
    45678910
    11121314151617
    18192021222324
    25262728293031
           
      12345
    6789101112
    13141516171819
    20212223242526
    27282930   
           
          1
    2345678
    9101112131415
    16171819202122
    23242526272829
    3031     
         12
    3456789
    10111213141516
    17181920212223
    242526272829 
           
      12345
    6789101112
    13141516171819
    20212223242526
    2728293031  
           
          1
    2345678
    9101112131415
    16171819202122
    23242526272829
    3031     
        123
    45678910
    11121314151617
    18192021222324
    252627282930 
           
     123456
    78910111213
    14151617181920
    21222324252627
    28293031   
           
          1
    2345678
    9101112131415
    16171819202122
    23242526272829
    30      
       1234
    567891011
    12131415161718
    19202122232425
    262728293031 
           
    1234567
    891011121314
    15161718192021
    22232425262728
    293031    
           
         12
    3456789
    10111213141516
    17181920212223
    24252627282930
           
      12345
    6789101112
    13141516171819
    20212223242526
    2728293031  
           
    1234567
    891011121314
    15161718192021
    22232425262728
    2930     
           
        123
    45678910
    11121314151617
    18192021222324
    25262728293031
           
        123
    45678910
    11121314151617
    18192021222324
    25262728   
           
     123456
    78910111213
    14151617181920
    21222324252627
    28293031   
           
         12
    3456789
    10111213141516
    17181920212223
    24252627282930
    31      
       1234
    567891011
    12131415161718
    19202122232425
    2627282930  
           
    1234567
    15161718192021
    293031    
           
         12
    3456789
    10111213141516
           
      12345
    6789101112
    13141516171819
    20212223242526
    2728293031  
           
          1
    2345678
    9101112131415
    16171819202122
    23242526272829
    3031     
        123
    45678910
    11121314151617
    18192021222324
    252627282930 
           
     123456
    78910111213
    14151617181920
    21222324252627
    28293031   
           
          1
    2345678
    9101112131415
    16171819202122
    23242526272829
    30      
       1234
    567891011
    12131415161718
    19202122232425
    262728293031 
           
    1234567
    891011121314
    15161718192021
    22232425262728
    293031    
           
        123
    45678910
    11121314151617
    18192021222324
    25262728293031
           
      12345
    6789101112
    13141516171819
    20212223242526
    27282930   
           
        123
    45678910
    11121314151617
    18192021222324
    252627282930 
           
     123456
    78910111213
    14151617181920
    21222324252627
    28293031   
           
       1234
    567891011
    12131415161718
    19202122232425
    2627282930  
           
    1234567
    891011121314
    15161718192021
    22232425262728
    293031    
           
         12
    3456789
    10111213141516
    17181920212223
    24252627282930
           
      12345
    6789101112
    13141516171819
    20212223242526
    2728293031  
           
      12345
    6789101112
    13141516171819
    20212223242526
    2728     
           
          1
    2345678
    9101112131415
    16171819202122
    23242526272829
    3031     
     123456
    78910111213
    14151617181920
    21222324252627
    282930    
           
         12
    3456789
    10111213141516
    17181920212223
    24252627282930
    31      
    1234567
    891011121314
    15161718192021
    22232425262728
    293031    
           
        123
    45678910
    11121314151617
    18192021222324
    252627282930 
           
     123456
    78910111213
    14151617181920
    21222324252627
    28293031   
           
     123456
    78910111213
    14151617181920
    21222324252627
    28293031   
           
       1234
    567891011
    12131415161718
    19202122232425
    262728293031 
           
     123456
    78910111213
    14151617181920
    21222324252627
    282930    
           
         12
    3456789
    10111213141516
    17181920212223
    24252627282930
    31      
      12345
    6789101112
    13141516171819
    20212223242526
    2728293031  
           
    1234567
    891011121314
    15161718192021
    22232425262728
    2930     
           
        123
    45678910
    11121314151617
    18192021222324
    25262728293031
           
      12345
    6789101112
    13141516171819
    20212223242526
    27282930   
           
          1
    2345678
    9101112131415
    16171819202122
    23242526272829
    3031     
          1
    2345678
    9101112131415
    16171819202122
    232425262728 
           
       1234
    567891011
    12131415161718
    19202122232425
    262728293031 
           
    1234567
    891011121314
    15161718192021
    22232425262728
    293031    
           
         12
    3456789
    10111213141516
    17181920212223
    24252627282930
           
      12345
    6789101112
    13141516171819
    20212223242526
    2728293031  
           
    1234567
    891011121314
    15161718192021
    22232425262728
    2930     
           
        123
    45678910
    11121314151617
    18192021222324
    25262728293031
           
  • OBBを計算する(プログラム)

    プログラム本体

    #pragma once
    #include <vector>
    #include <array>
    #include <limits>
    #include <valarray>
    
    
    template<typename real_t>
    real_t Length3(const real_t * const vec) {
      const int X = 0;
      const int Y = 1;
      const int Z = 2;
      return sqrt(vec[X] * vec[X] + vec[Y] * vec[Y] + vec[Z] * vec[Z]);
    }
    template<typename real_t>
    bool Normalize3(real_t* const pV)
    {
    
      const int X = 0;
      const int Y = 1;
      const int Z = 2;
    
      real_t len;
      real_t& x = pV[X];
      real_t& y = pV[Y];
      real_t& z = pV[Z];
    
      len = static_cast<real_t>(sqrt(x * x + y * y + z * z));
    
      if (len < static_cast<real_t>(1e-6)) return false;
    
      len = static_cast<real_t>(1.0) / len;
      x *= len;
      y *= len;
      z *= len;
    
      return true;
    }
    
    template<typename real_t>
    real_t Inner3(real_t const* const vec1, real_t const* const vec2) {
      const int X = 0;
      const int Y = 1;
      const int Z = 2;
      return ((vec1[X]) * (vec2[X]) + (vec1[Y]) * (vec2[Y]) + (vec1[Z]) * (vec2[Z]));
    }
    /*!
     * Jacobi法による固有値の算出
     * @param[inout] a 実対称行列.計算後,対角要素に固有値が入る
     * @param[out] v 固有ベクトル(aと同じサイズ)
     * @param[in] n 行列のサイズ(n×n)
     * @param[in] eps 収束誤差
     * @param[in] iter_max 最大反復回数
     * @return 反復回数
     * @see http://www.slis.tsukuba.ac.jp/~fujisawa.makoto.fu/cgi-bin/wiki/index.php?%B8%C7%CD%AD%C3%CD/%B8%C7%CD%AD%A5%D9%A5%AF%A5%C8%A5%EB
     */
    template<typename real_t>
    int EigenJacobiMethod(real_t* a, real_t* v, int n, real_t eps = 1e-8, int iter_max = 100)
    {
      real_t bii, bij, bjj, bji;
    
      auto bim = std::vector<real_t>(n);
      auto bjm = std::vector<real_t>(n);
    
      for (int i = 0; i < n; ++i) {
        for (int j = 0; j < n; ++j) {
          v[i * n + j] = (i == j) ? 1.0 : 0.0;
        }
      }
    
      int cnt = 0;
      for (;;) {
        int i, j;
    
        float x = 0.0;
        for (int ia = 0; ia < n; ++ia) {
          for (int ja = 0; ja < n; ++ja) {
            int idx = ia * n + ja;
            if (ia != ja && fabs(a[idx]) > x) {
              i = ia;
              j = ja;
              x = std::abs(a[idx]);
            }
          }
        }
    
        float aii = a[i * n + i];
        float ajj = a[j * n + j];
        float aij = a[i * n + j];
    
        float alpha, beta;
        alpha = (aii - ajj) / 2.0;
        beta = sqrt(alpha * alpha + aij * aij);
    
        float st, ct;
        ct = sqrt((1.0 + fabs(alpha) / beta) / 2.0);    // sinθ
        st = (((aii - ajj) >= 0.0) ? 1.0 : -1.0) * aij / (2.0 * beta * ct);    // cosθ
    
        // A = PAPの計算
        for (int m = 0; m < n; ++m) {
          if (m == i || m == j) continue;
    
          float aim = a[i * n + m];
          float ajm = a[j * n + m];
    
          bim[m] = aim * ct + ajm * st;
          bjm[m] = -aim * st + ajm * ct;
        }
    
        bii = aii * ct * ct + 2.0 * aij * ct * st + ajj * st * st;
        bij = 0.0;
    
        bjj = aii * st * st - 2.0 * aij * ct * st + ajj * ct * ct;
        bji = 0.0;
    
        for (int m = 0; m < n; ++m) {
          a[i * n + m] = a[m * n + i] = bim[m];
          a[j * n + m] = a[m * n + j] = bjm[m];
        }
        a[i * n + i] = bii;
        a[i * n + j] = bij;
        a[j * n + j] = bjj;
        a[j * n + i] = bji;
    
        // V = PVの計算
        for (int m = 0; m < n; ++m) {
          float vmi = v[m * n + i];
          float vmj = v[m * n + j];
    
          bim[m] = vmi * ct + vmj * st;
          bjm[m] = -vmi * st + vmj * ct;
        }
        for (int m = 0; m < n; ++m) {
          v[m * n + i] = bim[m];
          v[m * n + j] = bjm[m];
        }
    
        float e = 0.0;
        for (int ja = 0; ja < n; ++ja) {
          for (int ia = 0; ia < n; ++ia) {
            if (ia != ja) {
              e += fabs(a[ja * n + ia]);
            }
          }
        }
        if (e < eps) break;
    
        cnt++;
        if (cnt > iter_max) break;
      }
    
      return cnt;
    }
    
    //! @brief 固有値・固有ベクトル
    struct _eigen_ {
      double _value;   //!< 固有値
      double _vector[3];//!< 固有ベクトル
    };
    
    
    //! @brief データの平均を求める
    //! @param [in] vec データの配列
    //! @return 各要素の平均
    template<typename real_t,typename PointT>
    void Covariance_Ave(real_t* ave,const std::vector<PointT>& vec) {
    
      // 初期化
      ave[0] = 0;
      ave[1] = 0;
      ave[2] = 0;
    
      // 各要素平均
      for (size_t i = 0; i < vec.size(); i++) {
        ave[0] += vec[i][0];
        ave[1] += vec[i][1];
        ave[2] += vec[i][2];
      }
      ave[0] /= vec.size();
      ave[1] /= vec.size();
      ave[2] /= vec.size();
    
    }
    
    //! @brief 共分散を求める
    //! @param [in] average 各要素の平均 3次元
    //! @param [in] vec データ
    //! @param [in] param どの要素に対して求めるか。例えばxyzの時、x,yに対する共分散なら{0,1}を与える。
    //! @return 偏差の積の和の要素数分の一
    template<typename real_t,typename PointT>
    double Covariance(const real_t* const average, const std::vector<PointT>& vec, const std::array<int, 2>& param) {
    
      double sum = 0.0;
      for (size_t i = 0; i < vec.size(); i++) {
    
        //指定したパラメータの偏差を求める
        double deviation[3];
        for (size_t j = 0; j < param.size(); j++) {
          int target = param[j];
          deviation[target] = (vec[i][target] - average[target]);
        }
    
        //偏差の積
        double product = 1.0;
        for (size_t j = 0; j < param.size(); j++) {
          int target = param[j];
          product *= deviation[target];
        }
    
        //偏差の積の和を更新
        sum += product;
      }
    
      //偏差の積の和のN分の一
      return 1.0 / vec.size() * sum;
    }
    
    
    //! @brief データを主成分分析する
    //! @param [out] average 全データの各要素の平均
    //! @param [out] ev 固有値と固有ベクトル
    //! @param [in] pt 三次元の座標値一覧
    //! @return なし
    template<typename PointT>
    void PrincipalComponentAnalysis3D(_eigen_* e, const std::vector<PointT>& pt) {
    
      double average[3];
    
      //各要素の平均を求める。
      //これは共分散を求めるときに (x[i] - xの平均)×(y[i] - yの平均) 等の計算が必要なため
      Covariance_Ave(average, pt);
    
      //共分散を求める
      //第三引数の{0,0}はxxを表す。xyなら{0,1}。これはデータがxyzの順に並んでいる事が前提。
      double Sxx = static_cast<double>(Covariance(average, pt, { 0, 0 }));
      double Sxy = static_cast<double>(Covariance(average, pt, { 0, 1 }));
      double Sxz = static_cast<double>(Covariance(average, pt, { 0, 2 }));
      double Syy = static_cast<double>(Covariance(average, pt, { 1, 1 }));
      double Syz = static_cast<double>(Covariance(average, pt, { 1, 2 }));
      double Szz = static_cast<double>(Covariance(average, pt, { 2, 2 }));
    
      // 分散共分散行列
      double a[3 * 3] = {
         Sxx,Sxy,Sxz,
         Sxy,Syy,Syz,
         Sxz,Syz,Szz
      };
      double eigen[3 * 3];
      EigenJacobiMethod(a, eigen, 3);
    
      // eigenの対角線が固有値となっている
    
      e[0]._value = eigen[0];
      e[0]._vector[0] = eigen[0];
      e[0]._vector[1] = eigen[3];
      e[0]._vector[2] = eigen[6];
    
      e[1]._value = eigen[4];
      e[1]._vector[0] = eigen[1];
      e[1]._vector[1] = eigen[4];
      e[1]._vector[2] = eigen[7];
    
      e[2]._value = eigen[8];
      e[2]._vector[0] = eigen[2];
      e[2]._vector[1] = eigen[5];
      e[2]._vector[2] = eigen[8];
    }
    // OBBを表現する構造体
    struct
    OBBObject { double corner[3]; //OBBの角 double vectorU[3]; //各辺の方向と長さ double vectorV[3]; double vectorN[3]; };
    inline std::valarray<double> shift_centersUV(
      const std::valarray<double>& centerU,
      const std::valarray<double>& centerV,
      const std::valarray<double>& centerN,
      const std::valarray<double>& vectorU,
      const std::valarray<double>& vectorV,
      const std::valarray<double>& vectorN
    ) {
    
      //////////////////////////////////////////
      // vector vectorU→centerV
      std::valarray<double> vRG = centerV - centerU;
    
      double Rlen = Inner3(&vectorU[0], &vRG[0]);
      Rlen /= Length3(&vectorU[0]);
      std::valarray<double> direction_uv = vectorU;
      Normalize3(&direction_uv[0]);
      direction_uv *= -Rlen;
    
      glLineWidth(2);
      glColor3d(1, 0, 0);
      //////////////////////////////////////////
      // vector centerV→centerU
      std::valarray<double> vGR = centerU - centerV;
    
      double Glen = Inner3(&centerV[0], &vGR[0]);
      Glen /= Length3(&centerV[0]);
      std::valarray<double> direction_vc = centerV;
      Normalize3(&direction_vc[0]);
      direction_vc *= -Glen;
    
      //////////////////////////////////////////
      return direction_uv + direction_vc;
    }
    
    inline std::valarray<double> get_a_corner(
      const std::valarray<double>& centerU,
      const std::valarray<double>& centerV,
      const std::valarray<double>& centerN,
      const std::valarray<double>& vectorU,
      const std::valarray<double>& vectorV,
      const std::valarray<double>& vectorN
    ) {
    
      std::valarray<double> ret;
    
      /////////////////////////////
      // OBBの中央を見つける
      /////////////////////////////
      std::valarray<double> trueCenter
        = centerN + shift_centersUV(
          centerU,
          centerV,
          centerN,
          vectorU,
          vectorV,
          vectorN
        );
    
      ///////////////////////////////////////
      // OBBの中央から各辺の半分ずつ移動する
      ///////////////////////////////////////
    
      ret = trueCenter - (vectorU/2.0) - (vectorV/2.0) - (vectorN/2.0);
    
      return ret;
    
    }
    
    //! @brief 点群を囲むOBBを求める
    //! @param [in] obb BoundingBoxを表現する構造体
    //! @param [in] pt 計算対象の頂点
    template<typename PointT>
    void CalcOBB(OBBObject* obb, const std::vector<PointT> pt) {
    
      using scalar_t = double;
    
      _eigen_ e[3];
    
      PrincipalComponentAnalysis3D(e, pt);
    
      //降順ソート
      std::sort(std::begin(e), std::end(e), [](const _eigen_ & e1, const _eigen_ & e2) {
        return e1._value > e2._value;
      });
    
    
      scalar_t obbLen[3];//ボックス辺長さ
    
      std::array<std::valarray<double>, 3> centerd;
      centerd[0] = std::valarray<double>(3);
      centerd[1] = std::valarray<double>(3);
      centerd[2] = std::valarray<double>(3);
      for (int k = 0; k < 3; k++) {
    
        scalar_t inner_k_min = (std::numeric_limits<scalar_t>::max)();
        scalar_t inner_k_max = std::numeric_limits<scalar_t>::lowest();
    
        //第 k+1 主成分とすべての頂点の内積のうち最大・最小を取り出す
        for (size_t i = 0; i < pt.size(); i++) {
          scalar_t p[3] = {
            pt[i][0],
            pt[i][1],
            pt[i][2]
          };
          inner_k_min = (std::min)(
            Inner3(p, e[k]._vector),
            inner_k_min
            );
          inner_k_max = (std::max)(
            Inner3(p, e[k]._vector),
            inner_k_max
            );
        }
    
        obbLen[k] = (inner_k_max - inner_k_min);
    
    
        scalar_t tmp = (inner_k_max + inner_k_min) / 2.0;
        centerd[k][0] = e[k]._vector[0] * tmp;
        centerd[k][1] = e[k]._vector[1] * tmp;
        centerd[k][2] = e[k]._vector[2] * tmp;
      }
    
    
      ///////////////////////////////
    
      std::valarray<double> vecu = {
        e[0]._vector[0] * obbLen[0],
        e[0]._vector[1] * obbLen[0],
        e[0]._vector[2] * obbLen[0]
      };
      std::valarray<double> vecv = {
        e[1]._vector[0] * obbLen[1],
        e[1]._vector[1] * obbLen[1],
        e[1]._vector[2] * obbLen[1]
      };
      std::valarray<double> vecn = {
        e[2]._vector[0] * obbLen[2],
        e[2]._vector[1] * obbLen[2],
        e[2]._vector[2] * obbLen[2]
      };
    
      std::valarray<double> ret = get_a_corner(
        centerd[0],
        centerd[1],
        centerd[2],
        vecu,
        vecv,
        vecn
      );
    
      obb->corner[0] = ret[0];
      obb->corner[1] = ret[1];
      obb->corner[2] = ret[2];
      obb->vectorU[0] = vecu[0];
      obb->vectorU[1] = vecu[1];
      obb->vectorU[2] = vecu[2];
      obb->vectorV[0] = vecv[0];
      obb->vectorV[1] = vecv[1];
      obb->vectorV[2] = vecv[2];
      obb->vectorN[0] = vecn[0];
      obb->vectorN[1] = vecn[1];
      obb->vectorN[2] = vecn[2];
    
    
    }
    

    呼び出し方

    	std::vector<std::vector<double> > points; //点群の読み込み先
    
    	read_xyz(points,"C:\\test\\Suzanne.xyz",' '); //点群読み込み
    
    	CalcOBB(&obb, points);// OBB計算
    

    なお以下はxyzファイル読み込み

    //! @brief separator区切りの実数の一覧を読み込む
    //! @details xyzフォーマットは正式な規格として存在しないらしいので、ある程度の柔軟性を持たせる
    //! @param [out] ret 結果を格納する配列の配列
    //! @param [in] filename ファイル名
    //! @param [in] separator 区切り文字
    //! @return なし
    template<typename scalar_t>
    void read_xyz(std::vector<std::vector<scalar_t> >& ret,const char* filename, const char separator) {
    
    	std::ifstream ifs(filename);
    
    	std::string str;
    	while (std::getline(ifs, str)) {
    
      std::stringstream line{ str };
    
      std::string value;
    
      std::vector<scalar_t> tmp;
    
      while (getline(line, value, separator)){
      	tmp.push_back(std::atof(value.c_str()));
      }
      ret.push_back(tmp);
    
    	}
    
    }
    

    OBB 表示関数

    //! @brief 立方体を描画
    //! @param [in] width 立方体の一辺の長さ
    //! @return なし
    void draw_obb(const OBBObject& obb) {
      double xs = obb.corner[0];
      double ys = obb.corner[1];
      double zs = obb.corner[2];
    
      glEnable(GL_DEPTH_TEST);
      glFrontFace(GL_CCW);//時計回りが表
      glEnable(GL_CULL_FACE);//カリングを有効にする
    
      glBegin(GL_LINE_LOOP);
      glColor3d(0.5, 0.5, 1.0);
      glVertex3d(xs, ys, zs);//
      glVertex3d(
        xs + obb.vectorU[0],
        ys + obb.vectorU[1],
        zs + obb.vectorU[2]);
      glVertex3d(
        xs + obb.vectorU[0] + obb.vectorV[0],
        ys + obb.vectorU[1] + obb.vectorV[1],
        zs + obb.vectorU[2] + obb.vectorV[2]);
      glVertex3d(
        xs + obb.vectorV[0], 
        ys + obb.vectorV[1], 
        zs + obb.vectorV[2]);
      glEnd();
    
      glBegin(GL_LINE_LOOP);
      glColor3d(0.0, 0.0, 1.0);
      glVertex3d(
        xs + obb.vectorN[0] + obb.vectorV[0],
        ys + obb.vectorN[1] + obb.vectorV[1],
        zs + obb.vectorN[2] + obb.vectorV[2]);
      glVertex3d(
        xs + obb.vectorN[0] + obb.vectorU[0] + obb.vectorV[0],
        ys + obb.vectorN[1] + obb.vectorU[1] + obb.vectorV[1],
        zs + obb.vectorN[2] + obb.vectorU[2] + obb.vectorV[2]);
      glVertex3d(
        xs + obb.vectorN[0] + obb.vectorU[0],
        ys + obb.vectorN[1] + obb.vectorU[1],
        zs + obb.vectorN[2] + obb.vectorU[2]);
      glVertex3d(
        xs + obb.vectorN[0], 
        ys + obb.vectorN[1], 
        zs + obb.vectorN[2]);//
    
      glEnd();
      glBegin(GL_LINE_LOOP);
      glColor3d(1.0, 0.0, 0.0);
      glVertex3d(
        xs + obb.vectorV[0],
        ys + obb.vectorV[1],
        zs + obb.vectorV[2]
      );
      glVertex3d(
        xs + obb.vectorN[0] + obb.vectorV[0],
        ys + obb.vectorN[1] + obb.vectorV[1],
        zs + obb.vectorN[2] + obb.vectorV[2]
      );
      glVertex3d(
        xs + obb.vectorN[0],
        ys + obb.vectorN[1],
        zs + obb.vectorN[2]
      );
      glVertex3d(xs, ys, zs);//
      glEnd();
    
    
      glBegin(GL_LINE_LOOP);
      glColor3d(1.0, 0.5, 0.5);
      glVertex3d(
        xs + obb.vectorU[0],
        ys + obb.vectorU[1],
        zs + obb.vectorU[2]);//
      glVertex3d(
        xs + obb.vectorU[0] + obb.vectorN[0],
        ys + obb.vectorU[1] + obb.vectorN[1],
        zs + obb.vectorU[2] + obb.vectorN[2]
      );
      glVertex3d(
        xs + obb.vectorU[0] + obb.vectorN[0] + obb.vectorV[0],
        ys + obb.vectorU[1] + obb.vectorN[1] + obb.vectorV[1],
        zs + obb.vectorU[2] + obb.vectorN[2] + obb.vectorV[2]
      );
      glVertex3d(
        xs + obb.vectorU[0] + obb.vectorV[0],
        ys + obb.vectorU[1] + obb.vectorV[1],
        zs + obb.vectorU[2] + obb.vectorV[2]
      );
      glEnd();
    
    
      glLineWidth(2);
      glColor3d(0, 1, 0);
      glBegin(GL_LINE_LOOP);
      glVertex3d(
        xs,
        ys,
        zs);
      glVertex3d(
        xs + obb.vectorN[0],
        ys + obb.vectorN[1],
        zs + obb.vectorN[2]
      );
      glVertex3d(
        xs + obb.vectorN[0] + obb.vectorU[0],
        ys + obb.vectorN[1] + obb.vectorU[1],
        zs + obb.vectorN[2] + obb.vectorU[2]
      );
      glVertex3d(
        xs + obb.vectorU[0],
        ys + obb.vectorU[1],
        zs + obb.vectorU[2]
      );
      glEnd();
      glColor3d(0.5, 1, 0.5);
      glBegin(GL_LINE_LOOP);
      glVertex3d(
        xs + obb.vectorV[0] + obb.vectorU[0],
        ys + obb.vectorV[1] + obb.vectorU[1],
        zs + obb.vectorV[2] + obb.vectorU[2]
      );
      glVertex3d(
        xs + obb.vectorV[0] + obb.vectorN[0] + obb.vectorU[0],
        ys + obb.vectorV[1] + obb.vectorN[1] + obb.vectorU[1],
        zs + obb.vectorV[2] + obb.vectorN[2] + obb.vectorU[2]
      );
      glVertex3d(
        xs + obb.vectorV[0] + obb.vectorN[0],
        ys + obb.vectorV[1] + obb.vectorN[1],
        zs + obb.vectorV[2] + obb.vectorN[2]
      );
      glVertex3d(
        xs + obb.vectorV[0],
        ys + obb.vectorV[1],
        zs + obb.vectorV[2]);
      glEnd();
    
    
      glDisable(GL_CULL_FACE);//カリングを無効にする
    }